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INTRODUCTION 

This is the second in a series of four reports whose overall purpose is to describe an 
adaptive finite element method (AFEM) for solving systems of parabolic partial differential 
equations. In particular, AFEM attempts to find a numerical solution of an M-dimensional 
system of the form 

ut(x,t) + ftx,t,u,ux) = [D(x,t,u)ux(x,t)]x , a<x<b , t>0, (la) 

subject to the initial conditions 

u(x,0) = u°(x) ,azxzb (lb> 

and linear separated boundary conditions 

Al(t)u(a,f) + Bl(t)ux(a,t) = gl(t) (lc) 

A\t)uQ>,t) + B\t)u(b,t) = g\t) ' f>   • 

The variables x and t represent spatial and temporal coordinates and denote partial 
differentiation when they are used as subscripts; u, f, u°, £, and g are M-vectors; and D, A\ ti, A", 
and & are MxM matrices. 

The problem is assumed to be well-posed and parabolic; thus, e.g., D(x,t,u) is positive 
definite. The rows of B1 and W are restricted to be either entirely zero or a row of the MxM 
identity matrix. When the ih row of Bt or W is identically zero, then^- or 4; cannot be zero, 
respectively, and the boundary condition is a Dirichlet (essential) condition. Otherwise, the 
boundary condition is a Neumann or Robbins (natural) condition. The ultimate goal of AFEM 
is to determine an approximate solution to Eq. (1) to within a user prescribed error tolerance. 

The adaptive strategies utilized by AFEM are (1) error estimation coupled with (2) local 
mesh refinement (cf., e.g., Adjerid and Flaherty (ref 1), Babuska and Dorr (ref 2), Babuska, 
Zienkiewicz, Gago, and Oliveira (ref 3), Bank and Weiser (ref 4), Berger and Öliger (ref 5), 
Bieterman and Babuska (refs 6,7), Moore and Flaherty (ref 8), Shephard (ref 9), Strouboulis and 
Oden (ref 10), Zienkiewicz and Zhu (ref 11)), and (3) mesh movement (cf., e.g., Adjerid and 
Flaherty (ref 1), Arney and Flaherty (ref 12), Bell and Shubin (ref 13), Davis and Flaherty (ref 
14), Dorfi and Drury (ref 15), Dwyer (ref 16), Ewing, Russell, and Wheeler (ref 17), Hyman (ref 
18), Kansa, Morgan, and Morris (ref 19), Miller and Miller (refs 20,21), Petzold (ref 22), Rai and 
Anderson (ref 23), Russell and Ren (ref 24), Saltzman and Brackbill (ref 25), Smooke and 
Koszykowski (ref 26), Thompson (ref 27), Verwer, Blom, Furzeland, and Zegeling (ref 28), and 
White (ref 29)). 



The purpose of this report is to describe the error estimating procedures employed by 
AFEM. Detailed summaries of how AFEM implements its other adaptive strategies are found in 
separate reports entitled: Adaptive Finite Element Method III: Mesh Refinement (ref 30) and 
Adaptive Finite Element Method IV: Mesh Movement (ref 31). Furthermore, the report, 
Adaptive Finite Element Method I: Solution Algorithm and Computational Examples (ref 32), 
describes how all the adaptive algorithms are implemented in unison and contains results 
demonstrating the utility of AFEM as a computational tool. 

The error estimation performed by AFEM is based on the work of Adjerid and Flaherty 
(ref 1). Adjerid and Flaherty developed an a posteriori estimate to the spatial discretization 
error of a finite element method of lines solution for a vector system of parabolic partial 
differential equations. They discretized the system in space using Galerkin's method with 
piecewise polynomial finite element approximations of an arbitrary order/?. The error estimate 
was calculated using Galerkin's method with piecewise polynomial functions of order/? + 1. A 
nodal superconvergence property of the finite element method was used to neglect errors at 
nodes, and thus, improve computational efficiency. Ordinary differential equations (ODEs) for 
the finite element solution and error estimation were then integrated in time using the backward 
difference code DASSL (cf., Petzold (ref 33)). 

Adjerid and Flaherty (ref 1) assumed that the temporal discretization error associated 
with DASSL was negligible compared to the spatial error. Thus, their estimate of the spatial 
discretization error could be regarded as an estimate of the total error. They used their error 
estimate to control mesh moving and local mesh refinement procedures that simultaneously 
attempted to equidistribute the error estimate and satisfy a prescribed global error tolerance. 
Similar mesh refinement strategies have been used by Bieterman and Babuska (refs 6,7). 

Our goal is to develop techniques that simultaneously estimate temporal and spatial 
discretization errors. With such estimates, mesh refinement and/or moving decisions can be 
made to reduce the largest component of the error with the least amount of work. For example, 
if the temporal error is the dominant component of the total error, then one need only adjust the 
time step in order to improve accuracy. In this way, one avoids needlessly increasing the spatial 
discretization which would increase the computational complexity unnecessarily. Local and 
global estimates of the discretization error have been successfully used to control refinement 
algorithms that attempt to solve partial differential equations to prescribed levels of accuracy (cf., 
e.g., Babuska, Zienkiewicz, Gago, and Oliveira (ref 3) and Flaherty, Paslow, Shephard, and 
Vasilakis (ref 34) for a sampling). 

As in Adjerid and Flaherty (ref 1), Eq. (la) is discretized in space using Galerkin's 
method with piecewise linear finite elements. Temporal discretization, however, is performed by 
the backward Euler method as opposed to using an ODE code (cf., Coyle and Flaherty (ref 32)). 
A second solution is calculated using trapezoidal rule integration in time and the difference 
between the two solutions is used to furnish an estimate of the temporal discretization error. A 
third solution is obtained using quadratic finite elements and the trapezoidal rule in time. This 



solution is higher order in space and time than the original piecewise linear finite element- 
backward Euler solution. Hence, it can be used to provide an estimate of the total discretization 
error of the piecewise linear finite-element backward Euler solution. Furthermore, the 
difference between the piecewise linear and quadratic solutions calculated by the trapezoidal rule 
furnishes an estimate of the spatial discretization error (cf., Moore and Flaherty (ref 8) or Coyle 
and Flaherty (ref 35)). 

At first sight, the above procedure seems expensive; however, nodal superconvergence 
significantly reduces computational complexity. In the present context, superconvergence implies 
that finite element solutions converge at a faster rate at mesh point locations than elsewhere in 
the problem domain (cf., Adjerid and Flaherty (ref 1)). Hence, the error at the nodes may be 
neglected relative to the error in the interior of the elements when N, the number of mesh 
points, is sufficiently large. Nodal superconvergence has been used by several investigators as a 
means of constructing a posteriori error estimates in finite element approximations (cf., Adjerid 
and Flaherty (ref 1), Bieterman and Babuska (refs 6,7), and Coyle and Flaherty (ref 12)). Defect 
correction methods can also be used to reduce costs associated with the temporal integration (cf., 
Dahlquist, Björk, and Anderson (ref 36)). 

The piecewise linear and quadratic finite element procedures and the temporal 
integration schemes are outlined in the Numerical Discretization section (cf., Coyle and Flaherty 
(ref 32) for a more complete description). Derivations of the various error estimates (total, 
spatial, and temporal) are presented in the Error Decomposition and Estimates section. Then in 
Convergence Examples, examples that indicate the convergence of the error estimates to the true 
error and its components are described. Finally, in the last section, a summary of this report is 
presented. 

NUMERICAL DISCRETIZATION 

A weak form of the problem is constructed by multiplying Eq. (la) by a test function 
v(x,t) G Hg, integrating the result with respect to x from a to b, and integrating the diffusive 
term by parts to obtain 

(v,«f) + (yj) + A(y,u) = vTDux\ha , t>0 , for all v e H% . <2a) 

The inner product (v,u) and strain energy A (v,u) are defined as 

(y,u) = j vTu dx , A(y,u) = f v^Dux dx . (2b,c) 
i a Ja 

Functions v belonging to H1 are required to have finite values of (v,v) and (vx,vj. Functions in 
HQ are in H1 and vanish at x = a and/or b if an essential boundary condition is applied there. 



Any weak solution u G H2
E of Eq. (2a) must also satisfy any essential boundary conditions at x = 

or at x = b 

uffljt) = 
M 

ußj) 

7=1 

M 

-m (2d) 

gfc) - Y, AjmjM 
7« 
7=1 

+ A& (2e) 

when the Hh row of J^ and/or & is zero, respectively. Natural boundary conditions replace the f1 

component of ux at x = a or b in Eq. (2a) when prescribed. 

Initial conditions for Eq. (2a) are obtained by L2 projection, i.e., 

(v,u) = (v,u°) ,t = 0 ,for oliv e üT0
!   . (20 

A discrete version of the weak system Eq. (2) is constructed by using finite element- 
Galerkin procedures in space and finite difference techniques in time on a fully adaptive mesh 
(one that is both refined and moved as time progresses). 

Spatial Discretization 

To discretize Eq. (2a) in space, introduce a time-dependent partition 

n^f) = { a = ^0<^1(f)<^2(
f)<-<^ = * > P) 

of (a,b) into N subintervals (x^t), xt{t)), i=l,2,...,Nand approximate u and v by piecewise 
polynomial functions U and V, respectively, with respect to this partition. Thus, the spatially- 
discrete form of Eq. (2a) consists of finding U G S% C H*E such that 



(v,ut) + (vj) + ii(yfü) = vTDUx\
b

a, t>o , 

for all V e ^ c Hi , 
(4a) 

N        „1 (F,D) = (V,u°) ,t=0, for all V e S0
N c fl* (4b) 

The spaces S£ and S* will consist of either piecewise linear or piecewise quadratic polynomial 
functions. The spaces of piecewise linear polynomials are denoted S%J and Sty1 and a basis is 
easily constructed in terms of the familiar "hat" functions 

4>t(x,t) = 
x.it) -x^it) 

Xj+i® -x 

xi+1(t) -xJ[t) 
0 , otherwise 

, x^it) < x <; xffy 

, xt(t) <, x <, xi+1(f) 
(5) 

The piecewise linear finite element solution U2 G Sf7 is written in the form 

N 

i=0 

(6) 

and determined by solving the ordinary differential system 

\b 

t>0 ,for all Vt e SQ    , 
(7a) 

(YVUJ = (Vvu°) ,t=0, for all Vl e S0 
N,l (7b) 

where the piecewise linear test functions V1 G SN
0
J have a form similar to Eq. (6). 



Piecewise quadratic approximations U2 G SN
0'
2 are constructed by adding a "hierarchical" 

correction E2(x,t) to Uj, i.e., 

U2{x,t) = Ux(x,t) + E2(x,t) , (8a) 

where 

N 

E2(x$ = $>;_,/,(*) 0r_1/2(x,f) . 
i=l 

The basis tp;J/j(x,t), i=l,2,...,N, for the quadratic correction has the form 

ivx-x^mx-xm 

(8b) 

0 , otherwise 

Piecewise quadratic solutions are determined by solving 

(v2,u2t) + (v2,/(-,f,^,^x)) + iKv^cy = ifiw2x |*, (10a) 

t>0 , for all V2 eS0
w , 

(V2,U2) = (V2,K°) , t=0 , /or a« V2 e S^ , (10b) 

where V2 has a form similar to Eq. (8). 

Temporal Discretization 

Discretization in time is performed by integrating, for example, Eq. (4a) over the time 
step from f'1 to f to obtain 



E /;: £ y%+ v/*^, * * - /;: v^c*, (lla) 
/or a// V 6 SQ , 

(V,ü) = (V,K°) ,t=0,forallVe S0
N . (llb) 

The integration in Eq. (11) will be over an irregular region due to the mesh motion with the test 
function V having an undesirable time dependency. 

In order to overcome this difficulty, introduce a linear transformation 

* = *M 
+
(*M-*""I> +%A*r!(l+5) +Vz(Ax,n-Axrl)T(lH), (12a> 

t = fn_1 + At "a (12b) 

where 

Ax," = x? - JC*! , At» = tn - f»"1 (12c^) 

and 

*," = *#■) , i = 0,1,..^ • (12e> 

This transformation maps the rectangle {(£,T)|-1 <|<1, 0<T<1} onto the trapezoidal 
space-time element whose vertices are 

OCiV"-1) , (*rV"_1) , C«iV"> and Cx»V"> • 

The basis elements 0Mfcf) and «^fc^, the only nonzero ones on 
{(x,t) Ix^ft) <x< xt(t) ,r*<t< f}, are transformed to functions with no T dependency; thus, 
(ßi^fot) and <f>i(x,t) become, respectively, 



Define 

and write Eq. (11) as 

♦.,«) = 1/2(l-0 , and 

^(5) = 1/2(l+0 , -1 s $ * 1 . 

F«  = /!-" /*   (yrj/r +  VTf +  ^5>^,) <** * 

N 

T F, = r VTDUx\
b

a Atndx ,for all V € S0" 

(13a) 

(13b) 

(14) 

(V,U) = (V,K°) , f=0 ,for all V e S* . 

by performing the change of variables from t to r (cf., Eq. (12b)). 

Transforming Eq. (14) from the (x-t)-plaxie to the (£,r)-plane (cf., Eq. (12)) yields 

(15a) 

(15b) 

'<-/.'/-' 
VT(Ux^)x - V

TW\tx + VTfic^ + V^DU^ dldx 

where 

(16a) 

x = — (16b) 

Equation (16a) can be simplified further by integrating by parts to obtain 

Ft = Gfl) - G/0) + Af^1 J,(T) dx (17a) 

where 



Gt(x) = J1 VTUx^ d\ , (17b) 

Substituting Eq. (17a) into Eq. (15a) then yields 

N 

£   G.(l) - G.(0) + A*"/^ Z/T^T] = A* "£ yri>^|f tfx , (18a) 
,N for all V e So , 

(V,U) = (y,«°) ,t=0,forallVe S0
N . (X8b) 

All that remains is to approximate the time integrals in Eq. (18) using a quadrature rule. 
This is done by using a weighted two-step method, which for Eq. (18) has the form 

£ [Gfl) + Gt(P) + At»07.(1) + Ar"(1-6)7.(0)] = A* WTDig»|T=i (19a) 

+ Af(l-ö)yrDi7j*|T=0,/orfl«yG50^,ÖG[0,l], 

(V,U) = (y,u°) , f=0 , /or all V e S0
N . (19h) 

Only two choices of 0 are utilized: either 0 = 1, which yields the backward Euler method, or 0 = 
V2, which yields the trapezoidal rule. 

ERROR DECOMPOSITION AND ESTIMATES 

Strang and Fix (ref 37) demonstrate how the total discretization error of a numerical 
method for solving parabolic partial differential equations, which couples finite elements in space 
with finite differences in time, can be decomposed into its spatial and temporal components. 
They do this by defining an intermediate solution, U, that satisfies the finite element 
discretization (cf., Eq. (4a)) but is integrated exactly in time. Continuing to let u denote the 



exact solution of the Galerkin problem (cf., Eq. (2)), let Ue denote the numerical approximation 
which satisfies both the finite element equations, and the finite difference equations in time (cf., 
Eq. (19)). Then the total discretization error, e, where 

e = u - Ue (20a) 

can be bounded as follows: 

H| = \u-U +U - UQ\\ * \\u - U\\ + \\U - Ue\\ . (20b) 

Strang and Fix (ref 37) show how the first term of the right-hand side of Eq. (20b), 
\\u - Uj, is strictly an error due to the finite element approximation process, and, as such, 
dependent only on the spatial discretization. Thus, ||« - U\\ is the spatial component of the total 
discretization error. Similarly, they show that W - Ue\\ is dependent on the temporal 
discretization and hence represents the temporal component of the total discretization error. 

Our goal is to estimate the discretization error per time step in solutions of Eq. (19) 
obtained by using piecewise linear finite element approximations in space and the backward 
Euler method in time. It seems most appropriate to gage errors in the H1 norm 

««111 = K«*>«*)+ (v)]*; (21) 

however, other metrics may also be used. An error estimate that is global in space and local in 
time may at first seem unusual, but it is commonly used when spatial finite element 
approximations are combined with temporal finite difference methods (cf., Thome'e (ref 38)). 

Let the piecewise linear finite element solutions at time f obtained by using backward 
Euler (0=1 in Eq. (19)) and trapezoidal rule (e=V2 in Eq. (19)) temporal integration be denoted 
by U"j and Up/2, respectively. Likewise, let U?/2 denote the piecewise quadratic finite element 
solution of Eq. (19) at f found by using the trapezoidal rule integration in time. 

It is known (cf., Strang and Fix (ref 37)) that 

\\u(-,tn) - D^Ol! = 0((A*")2) + CKN-1) . (22) 

Since 

M',n - VU'A - 0((Mf) + CKN-2) , (23) 

one should be able to use the difference between V?/7 and U\ to estimate the error in U\; thus, 

10 



s 1117; - C^|x + 0((Aff) + OCAT*) 
(24) 

The main problem in using \Ü?/2 - l^lli as an a posteriori estimate of ||« - IT}^ is the 
computational effort required to obtain U"2. This cost can be reduced considerably by using the 
superconvergence property of the finite element method for one-dimensional parabolic systems. 
Nodal superconvergence enables us to approximate U"2 as 

K - K + EI (25) 

where U?A is obtained by solving Eq. (19) using trapezoidal rule integration and E?/2 is obtained by 
solving Eq. (19) by trapezoidal rule integration wjth 1/ replaced by Eq. (8b). Furthermore, it is 
only necessary to test Eq. (19) against functions VE. SN

0-
2, where SN

0'
2 is a space of quadratic 

polynomials that vanish on IIN(f). 

To summarize, the procedure for obtaining the finite element solution U\ and its error 
estimate U"2 + E"2 - U\ for the time step [f'^f] consists of: 

1. Determining U\ as the solution of 

N 

£[G,.(1) - G,.(0) + A*"7,(1)] = AtMVrjy,U^} \b 
\a » 

for all V € So N,I 

(26a) 

where 

G/Ll) = /_* VTUX dl , Gf(0) = £ VTlf[-lxn{" dl (26b,c) 

w - /: -y\v\%\ + vTrx? + viDnirx — 
l    n 
H 

d\ (26d) 

and 

(V,Dfr = (V,u°) , f=0 , for all V e So"'*1 . (26e) 

11 



N 

E 
j=i   L 

2. Determining V"2 as the solution of 

At" GjX) - G.(0) + ^- [1.(1) + 1.(0)] 

Ar' V/W£   + V7/)»-1^-1 |* ,for allVe S*1 
x
 x\a 

where 

G,.(l) = j\ VTU^ dl , G/0) = /_' VTlf[-lxll dl, 

(27a) 

(27b,c) 

w - /: -Vr(C^")£ + VTfxZ + V^"^— 
!«-« 

<**, (27d) 

*»-£ -V7^"1*»-1), + V3^"1*?-1 + vfD"-1^ ■l    1 

«„»-i 
dt, 

and 

(F,üfr = (V,«°) , t=0 ,for all V e Sf1 

(27e) 

(271) 

3. Determining E"2 as the solution of 

AT 

i=l 

Ar\ fyl) - G,(0) + -^-(ftl) + iß)] = 0, 

/or ß/Z F e S0 
A^2 

where 
1 wrw»-i n-1 (?,.(!) = /; VE^idi, op) - /; vXV1^> 

and 

(28a) 

(28b,c) 

12 



dl (28d) 

im=i: -v\^x-% + y
7/-1^-1 + yfzy-1^;1 

? «»-I 
<*£, (28e) 

<yvlfx +<) = (V2,u°) , *=0 , /or a// V2 e S* N2 (28f) 

Temporal error estimation is local; thus, we use VJ1 as an initial condition for the 
trapezoidal rule integrations in Eqs. (27) and (28). Nodal superconvergence and the hierarchical 
formulation has uncoupled the piecewise linear and quadratic components of U?A. The spatial 
error estimate E"2 on the subinterval (x^, x) is furthermore uncoupled from the error on other 
subintervals and this significantly reduces the computational complexity associated with solving 
Eq. (28). The solution of Eq. (27), noted in Step 2, is necessary in order to increase the 
temporal accuracy of the solution because superconvergence only increases the order of accuracy 
in space. Some computational savings can generally be obtained, especially for nonlinear 
problems, by calculating U"2 as a defect correction to the backward Euler solution U\. 

As described above, 

e" := |l£ + El - üft (29) 

furnishes an estimate to the error 
suggests the inequality 

\\u - U\ Ij of the backward Euler solution. Equation (29) 

en <, ||ü£ - V[\x + IE^IJ (30) 

The term |l/£ - U]^ is the difference between two piecewise linear solutions computed with 
temporal integration schemes of different orders and can be regarded as a measure of the 
temporal discretization error. In a similar manner, Wv2\i can be regarded as a measure of the 
spatial discretization error. Indeed, when the finite element system, Eq. (4), is integrated exactly 
in time, Adjerid and Flaherty (ref 1) proved that \E\X converges to the exact spatial 
discretization error ||M - U^ as JV -» » for linear parabolic problems. 

13 



CONVERGENCE EXAMPLES 

Example 1 

Consider the linear heat conduction problem 

"*  =  A "xr > ° < * <   1     >     *>0> (31a> 
7T2 

K(X,0) = simtx , 0 <; A: <. 1 , (3lb) 

«(0,f) = u(l,f) = 0 , t > 0 . (31c,d) 

The exact solution of this simple problem is 

u(x,t) = c"'sinujc . (3Z) 

We solved Eq. (31) on a uniform mesh with JV finite elements for one time step At using 
the methods described above and several choices of JV and At. The effectivity index 

e := — (33) 
H;At) ~ Ul\\t 

(cf., Babuska, Miller, and Vogelius (ref 39)), is used as a means of gaging the accuracy of the 
error estimate e1. Ideally, we would like © not to differ appreciably from unity and to approach 
unity as N -» <» and At -> 0. 

We present a summary of results for a sequence of calculations performed with N — 2" 
and Ar = 1.024x2m, m = 2,...,20,in Figure 1. These results strongly suggest that @ -* 1 as m -> 
00. 
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Total Effectivity vs. m 
Number of elements = 2m 

Time step = 1.024 x2"w 

0 

Figure 1. Total effectivity versus discretization for Example 1. 
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Example 2 

Consider the linear heat conduction problem 

«, + « = — «^   ,   0 < x < 1   ,   f > 0 , (34a) 

u(x,0) = 1   ,   0 s x * 1 , (34b> 

u(0,t) = u(U) = e*   ,   r >0 . (34c'd) 

The exact solution of this simple problem is 

u(x,t) = e* . @5) 

We solved Eq. (34) on a uniform mesh with eight finite elements for one time step At 
using the methods described above and several choices of At. The temporal effectivity index 

:=     K - Ulh <36) 
\\u(;At) ~ UX 

is used as a means of gaging the accuracy of the error estimate ||17^ - l^||r Again, we would 
like ®t not to differ appreciably from unity and to approach unity as At -> 0, since there is no 
spatial component to the total discretization error. 

We present a summary of results for a sequence of calculations performed with At = 
1.024x2m, m = l,...,10,\n Figure 2. These results strongly suggest that ©t -* 1 as m -» °o. 
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Temporal Effectivity vs. m 
Time step = 1.024 x2_w 

0, 

Figure 2. Temporal effectivity versus discretization for Example 2. 

17 



Example 3 

Consider the linear heat conduction problem 

ut - u = — u^   ,   0<x< 1 ,t> 0 , (37a) 
n2 

u(x,Q) = sin nx   ,   0 ^ x £ 1 , 

u(0,t) = «(l,f) =0   ,   f > 0 . 

The exact solution of this simple problem is 

u(x,t) = sin nx 

(37b) 

(37c,d) 

(38) 

We solved Eq. (37) on a uniform mesh with N finite elements for one time step At = 
0.001 using the methods described above and several choices of N. The spatial effectivity index 

e  := lE'Jl (39) 
M'M - uX 

is used as a means of gaging the accuracy of the error estimate \\Eljv Again, 0S should not 
differ appreciable from unity since for such a small At, there is, effectively, no temporal 
component to the total discretization error. 

We present a summary of results for a sequence of calculations performed with N = 2", 
m = 1,...,10, in Figure 3. 
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Spatial Effectivity vs. m 
Number of elements = 2m 

1.01 

1.00 - 

ec 

0.99 

0.98 

1.01 

1.00 

0.99 

0.98 

Figure 3. Spatial effectivity versus discretization for Example 3. 
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SUMMARY 

Methods for calculating a posteriori estimates of the total, spatial, and temporal 
discretization errors when a vector system of parabolic partial differential equations is solved 
using piecewise linear finite elements in space and the backward Euler method in time was 
presented. First, the division of the total discretization error into its spatial and temporal 
components was shown theoretically. This was followed by a method to approximate these errors 
numerically. Then it was shown how to obtain these error estimates by using higher-order 
methods, with nodal superconvergence, in order to improve computational efficiency. Finally, a 
comparison of the exact and estimated errors was presented in Examples 1, 2, and 3 and in 
Figures 1, 2, and 3. 

Comparison of the exact and estimated errors, presented in Examples 1, 2, and 3, give us 
some confidence in the accuracy of our error estimates. As indicated by Figures 1, 2, and 3, the 
three estimates all converge to the true errors as the appropriate discretization levels are 
increased. Even for coarse levels, results indicate that the estimates do a reasonable job of 
approximating the exact error (cf., Figures 1, 2, and 3). Thus not only does one get an indication 
when the total error of the method is too large, but also the dominant component of the error. 
With this knowledge, one can adjust the appropriate discretization level accordingly. Even in 
situations when the estimates are not accurate, one gets an indication that refinement is 
necessary in a particular region. 
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